赵里

地球与空间科学学院 • 教授

办公地址:
理科2号楼2808S

电子邮件:
lizhaopku@pku.edu.cn

个人简介

北京大学讲席教授

中国科学技术大学学士,1986

美国普林斯顿大学博士,1995


基本情况

赵里,北京大学讲席教授,现任理论与应用地球物理研究所所长,河北红山地球物理国家观测研究站站长。1986年本科毕业于中国科学技术大学,1995年博士毕业于美国普林斯顿大学。1995-2005年在美国MIT和南加州大学暨南加州地震中心从事研究工作,2006-2017年在台北中研院地球科学研究所工作,历任副研究员、研究员、副所长。201712月至今在北京大学任教。长期从事理论与计算地震学以及观测地震学研究,涵盖结构与震源地震学。是最早一批提出有限频率地震波(现全波形)结构成像理论的学者之一,并将该方法用于多尺度的地球结构研究。发展了基于应变格林函数库在三维结构中反演震源破裂过程的实用算法,不仅为震源破裂过程的近实时反演提供了有效工具,也可以用于快速计算精确的三维强地面运动,为大震后应急响应提供可靠的科学依据。在国际专业期刊发表论文90余篇,引用2000余次。先后主持美国自然科学基金NSF及南加州地震中心SCEC项目、台北中研院前瞻计划、中国自然科学基金NSFC面上及联合基金重点计划。

 


主要研究方向

地震学,包括理论地震学、计算地震学、地球内部结构与地震震源模型反演、地震灾害评估。

教育与工作经历

1. 2017/12 至今,北京大学,地球与空间科学学院,教授

2. 2013/08-2017/12,中央研究院(台北),地球科学研究所,研究员兼副所长

3. 2006/08-2013/08,中央研究院(台北),地球科学研究所,副研究员

4. 2005/08-2006/08,中央研究院(台北),地球科学研究所,访问学者

5. 2000/09-2005/08,美国南加州大学,地球科学系,研究助理教授

6. 1997/08-2000/08,美国麻省理工学院,地球大气与行星科学系,研究学者

7. 1995/07-1997/07,美国麻省理工学院,地球大气与行星科学系,博士后

8. 1990/09-1995/06,美国普林斯顿大学,地质与地球物理系,博士,导师:Francis Anthony Dahlen

9. 1986/07-1990/08,中国国家地震局,分析预报中心,研究实习员

10. 1981/09 -1986/06,中国科技大学,地球和空间科学系,学士,导师:傅容珊

研究内容简介

一、 理论地震学
        
地球的自由振荡(normal modes)及其与地震行波(seismic waves)之间的二像性(duality)。自由振荡与地震波之间的关联同量子力学中的波粒二象性一样,是对同一物理现象(光或地震波)的两种不同的解释。但地震学过去一直没有建立一个系统的理论来解释自由振荡与地震波之间的关系,仅有在零星的文章中讨论简单的情形(如仅讨论SH波或均匀模型)。我在博士期间所发表的四篇文章Zhao & Dahlen (1993; 1995a,b; 1996)首次在理论上完整建立了真实地球结构中自由振荡与地震波之间的等价关系(mode-ray duality)
       
1990年以来,地震学界认识到射线走时成像方法的大幅进步必须依赖新的理论方法。我在麻省理工学院的工作Zhao et al. (2000)与普林斯顿大学小组的Dahlen et al. (2000)同时提出了有限频率地震波结构敏感度函数的理论与计算方法,并证实有限频率地震波走时对介质波速的敏感度函数具有悖于常理的所谓香蕉-甜甜圈(banana-doughnut)特征,即影响有限频率地震波走时的结构不是地震波射线上的速度扰动,而是射线周围区域的波速变化。值得一提的是,Dahlen et al. (2000)的方法采用射线近似理论,仅适用高频的几何射线。而Zhao et al. (2000)则是使用自由振荡叠加的全波理论,其结果适用于所有频率以及任何地震波,因此更具有普遍适用性。

二、 计算地震学

        理论地震图的计算、地球自由振荡本征频率与本征函数的计算、以及有限频率地震波成像中地震波对地球结构参数偏导数的计算。为实现在三维地球模型中反演速度结构与震源破裂过程,在Zhao et al. (2005)中首次提出基于有限差分法的计算三维模型中地震波走时与振幅对速度结构敏感度函数的算法,使得以三维模型为参考模型的层析成像成为可能。在 Zhao et al. (2006)中提出应变格林张量 (Strain Green Tensor, SGT)的概念,利用地震波动方程格林函数所具有的源与观测点之间的互易性(source-receiver reciprocity),通过建立应变格林张量库(SGT database),来提高三维模型中精确理论地震图的计算效率,以实现在三维模型中震源破裂过程的反演。在Zhao & Chevrot (2011a,b)中提出基于自由振荡叠加的普遍算法,实现计算从地震波形记录所得到的各种观测数据(如走时、振幅或剪切波分裂)对所有地球介质参数(如波速、各向异性或衰减)的敏感度函数,从而可以利用任何地震波观测来反演地球模型中的任何参数。
三、 地球内部结构的多重尺度层析成像
        
Chevrot博士合作的对非洲南部地区Kaapvaal克拉通的剪切波三维速度结构研究结果Chevrot & Zhao (2007)是最早的有限频率多尺度三维层析成像工作。Lin, Zhao & Hung (2014)对南加州地区岩石圈及上部地幔三维各向异性结构进行了有限频多尺度成像 ,该结果也是全球目前唯一的三维各向异性有限频多尺度全波成像结果,对增进我们理解该地区的构造现状及动力学演化有很大帮助。 

四、 地震震源破裂过程反演
        
利用已经建立的台湾地区三维应变格林张量库(SGT database)近实时地在三维模型中计算地面运动的速度与加速度峰值图(PGV/PGA map)及地表震动影象(Shake Movie)Hsieh, Zhao & Ma (2014)实现在三维模型中判断地震的实际断层面,以避免点震源的两个共轭面中实际发震面的不确定性。

        与美国加州大学圣芭芭拉分校(UC Santa Barbara)的纪晨教授合作将他的震源破裂过程反演方法与我们所发展的应变格林张量库(SGT database)方法结合,发展出能够有效地在三维模型中反演震源破裂过程的方法。Hsieh, Zhao, Ji & Ma (2016)能够有效地利用宽频(短周期达3秒)波形在三维模型中反演震源破裂过程的方法,在全球规模6级以上地震发生后1-2小时内可以初步确定可靠的震源错动量的时空分布。

五、 地震灾害分析与评估
        
在计算地震学应用方面还利用波动方程在复杂结构模型中的数值解对地震造成的强地面运动做接近实际的估计,提高地震灾害评估(seismic hazard assessment, SHA)的可靠性,从而在地震尚无法预报的当前为地震减灾提供有效的帮助。我在美国南加州大学工作期间参与南加州地震中心(Southern California Earthquake Center, SCEC)CyberShake计划,是其中地震波模拟计算部分的负责人。该计划的目标是建立一个计算平台,进行基于波动物理模拟的地震灾害评估(physics-based SHA, PSHA)。建立接收点应变格林张量(receiver-side SGT, RSGT)库的方法使地震灾害评估中对每一评估地点所需要数十万次三维数值模拟能够以一次模拟实现(见Maechling, Deelman, Zhao et al., 2007)。该计算平台(https://scec.usc.edu/scecpedia/CyberShake)是目前世界上唯一能够从事PSHA的实用工具,并已用于产生新一代的加州地震灾害图(seismic hazard map,见Graves et al., 2010)。


近5年内发表的论著

(1)    Chao, W.-A.*, Wu, Y.-M., Zhao, L., Tsai, V. and Chen, C.-H. Seismologically determined bedload flux during the typhoon season, Scientific Reports, 2015, 5, 8261.

(2)  Legendre, C.*, Zhao, L., Huang, B.-S., and Huang, W.-G. Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam, Earth, Planets and Space, 2015, doi: 10.1186/s40623-015-0193-3.

(3)   Legendre, C.*, Zhao, L., and Chen, Q.-f. Upper-mantle shear-wave structure under East and Southeast Asia from Automated Multimode Inversion of Waveforms, Geophysical Journal International, 2015, 203, 707-719.

(4)    Legendre, C.*, Deschamps, F., Zhao, L., and Chen, Q.-f. Rayleigh-wave dispersion reveals crust-mantle decoupling beneath eastern Tibet, Scientific Reports, 2015, 5, 16644, doi: 10.1038/srep16644.

(5)     Luo, Y.*, Zhao, L., Zeng, X. F. and Gao, Y. Focal mechanisms of the Lushan earthquake sequence and spatial variation of the stress field, Science in China: Earth Sciences, 2015, 58 1-11.

(6)  Tang, V., Zhao, L.*, and Hung, S.-H. Seismological evidence for a non-monotonic velocity gradient in the topmost outer core, Scientific Reports, 2015, 5, 8613, doi: 10.1038/srep08613.

(7)   Yu, H., Zhao, L., Liu, Y., Ning, J.*, Chen, Q.-f., and Lin, J. Stress adjustment revealed by seismicity and earthquake focal mechanisms in northeast China before and after the 2011 Tohoku-Oki earthquake, Tectonophysics, 2015, doi: 10.1016/j.tecto.2015.10.009.

(8)    Chao, W.-A.*, Zhao, L., Chen, S.-C., Wu, Y.-M., Chen, C.-H., and Huang, H.-H. Seismology-based early identification of dam-formation landquake events, Scientific Reports, 2016, 6, 19259, doi: 10.1038/srep19259.

(9)    Hsieh, M.-C., Zhao, L.*, Ji, C., and Ma, K.-F. Efficient inversions for earthquake slip distributions in three-dimensional structures, Seismological Research Letters, 2016, 87(6), 1342-1354, doi: 10.1785/0220160050.

(10)    Legendre, C.*, Zhao, L., Deschamps, F., and Chen, Q.-f. Layered anisotropy within the crust and lithospheric mantle beneath the Sea of Japan, Journal of Asian Earth Sciences, 2016, 128, 181-195.

(11)    Singh, A. P.*, Zhao, L., Kumar, S., and Mishra, S. Inversions for focal mechanisms and regional stress in the Kachchh Rift Basin, western India: Tectonic implications, Journal of Asian Earth Sciences, 2016, 117, 269-283.

(12)    Chao, W.-A.*, Wu, Y.-M., Zhao, L., Chen, H., Chen, Y.-G., and Huang, H.-H. A first real-time seismology-based landquake monitoring system, Scientific Reports., 2017, 7, 43510, doi: 10.1038/srep43510.

(13)    Ko, Y.-T.*, Hung, S.-H., Kuo, B.-Y., and Zhao, L. Seismic evidence for the depression of the D" discontinuity beneath the Caribbean: Implication for slab heating from the Earth's core, Earth and Planetary Sciences Letters, 2017, 467, 128-137.

(14)     Singh, A. P.*, Rao, N. P., Kumar, M. R., Hsieh, M.-C., and Zhao, L. Role of the Kopili Fault in deformation tectonics of the Indo-Burmese Arc inferred from the rupture process of the 3 January 2016 Mw6.7 Imphal earthquake, Bulletin of the Seismological Society of America, 2017, 107(2), 1041-1047.

(15)    Tian, Y., Legendre, C. P., Zhou, T., Han, J., Zhao, L., and Ning, J.* High resolution anisotropic phase velocity tomography of Northeastern China and its implication, Chinese Journal of Geophysics, 2017, 60(5), 1659-1675.

(16)    Chao, W.-A.*, Wu, T.-R., Ma, K.-F., Kuo, Y.-Y., Wu, Y.-M., Zhao, L., Chung, M.-J., Wu, H., and Tsai, Y.-L. The large Greenland landslide of 2017: Was a tsunami warning possible? Seismological Research Letteers, 2018, doi: 10.1785/0220170160.

(17)  Luo, Y., Hsieh, M.-C., and Zhao, L.* Source rupture process of the 2014 MS6.5 Ludian, Yunnan, China, earthquake in 3D structure: The strain Green’s tensor database approach, Bulletin of the Seismological Society of America, 2018, 108(6), 3270-3277.

(18)  Lo, Y.-C, Zhao, L.*, Xu, X., Ji, C., and Hung, S.-H. The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2018, 2, 139-149, doi: 10.26464/epp2018014.

(19)   Ye, T., Huang, Q.*, Chen, X., Zhang, H., Chen, Y. J., Zhao, L., and Zhang, Y. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3-D MT inversion at the intracontinental block boundary southeast of the Tibetan Plateau, Journal of Geophysical Research: Solid Earth, 2018, 123, 11,112-11,126. https://doi.org/10.1029/2018JB015936.

(20)    Luo, Y.*, Zhao, L., and Tian, J. The focal depths of the 2008 Panzhihua earthquake sequence and the stress field in the source region, Science China-Earth Sciences, 2019, 63(3), 439-451.

(21)   Ojo, A. O., Ni, S.*, Xie, J., and Zhao, L. Further constraints on the shear wave velocity structure of Cameroon from joint inversion of receiver function, Rayleigh wave dispersion and ellipticity measurements, Geophysical Journal International, 2019, 217, 589-619.

(22)   Ojo, A. O., Zhao, L.*, and Wang, X. Estimations of sensor misorientation for broadband seismic stations in and around Africa, Seismological Research Letters, 2019, 90(6), 2188-2204.

(23)  Lo, Y. C., Yue, H.*, Sun, J., Zhao, L., and Li, M. The 2018 Mw6.4 Hualien earthquake: Dynamic slip partitioning reveals the spatial transition from mountain building to subduction, Earth and Planetary Science Letters, 2019, 524, 115729-115740.

(24)   Luo, Y., Zhao, L.*, and Tian, J. Spatial and temporal variations of stress field in the Longmenshan Fault Zone after the 2008 Wenchuan, China earthquake, Tectonophysics, 2019, 767, 228172.

(25)   Tian, J., Luo, Y., and Zhao, L.* Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 2019, 3, 243-252.

(26)   Yun, N., Zhou, S.*, Yang, H.*, Yue, H., and Zhao, L. Automated detection of dynamic earthquake triggering by the highfrequency power integral ratio, Geophysical Research Letters, 2019, 46, 12977-12985.

(27)    Wei, Z., and Zhao, L.* Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 2019, 3, 526-536.

(28)  Hsieh, M.-C., Lin, Y.-Y.*, Ma, K.-F., Zhao, L., and Liao, Y.-W. Two earthquake sequences nearly a century apart reveal a conjugate seismogenic system in central Taiwan, Seismological Research Letters, 2020, doi: https://doi.org/10.1785/0220190335.

(29)    Legendre, C.*, Tseng, T.-L., and Zhao, L. Surface-wave phase-velocity maps of the Anatolia region (Turkey) from ambient noise tomography, Journal of Asian Earth Sciences, 2020, 193, 104322.

(30)    Yue, H.*, Zhang, Y., Ge, Z., Wang, T., and Zhao, L. Resolving rupture processes of great earthquakes: reviews and perspective from fast response to joint inversion, Science China-Earth Sciences, 2020, 63, 492-511.

部分其余论著

1. Zhao, L., Li, Z.-J. and Zheng, S.-H. Focal mechanism of the October 19, 1989, Datong, China, earthquake, Acta Seismologica Sinica, 1992, 5(4), 887-890.

2. Zhao, L. and Dahlen, F. A. Asymptotic eigenfrequencies of the Earth's normal modes, Geophys. J. Int., 1993, 115, 729-758.

3. Zhao, L. and Dahlen, F. A. Asymptotic normal modes of the Earth-II. Eigenfunctions, Geophys. J. Int.,1995, 121, 585-626.

4. Zhao, L. and Dahlen, F. A. Asymptotic normal modes of the Earth-III. Fréchet kernel and group velocity, Geophys. J. Int., 1995, 122, 299-325.

5. Zhao, L. and Dahlen, F. A. Mode-sum to ray-sum transformation in a spherical and an aspherical Earth, Geophys. J. Int., 1996,126, 389-412.

6. Zhao, L. and Jordan, T. H. Sensitivity of frequency-dependent traveltimes to laterally heterogeneous, anisotropic Earth structure, Geophys. J. Int., 1998, 133, 683-704.

7. Katzman, R., Zhao, L. and Jordan, T. H. High-resolution, two-dimensional vertical tomography of the central Pacific mantle using ScS reverberations and frequency-dependent travel times, J. Geophys. Res.,1998,102, 9887-9909.

8. Zhao, L., Jordan, T. H. and Chapman, C. H. Three-dimensional Fréchet differential kernels for seismic delay times, Geophys. J. Int., 2000, 141, 558-576.

9. McGuire, J. J., Zhao, L. and Jordan, T. H. Rupture dimensions of the 1998 Antarctic earthquake from low-frequency waves, Geophys. Res. Lett., 2000, 27, 2305-2308.

10. McGuire, J. J., Zhao, L. and Jordan, T. H. Teleseismic inversion for the second-degree moments of earthquake space-time distributions, Geophys. J. Int., 2001, 145, 661-678.

11. McGuire, J. J., Zhao, L. and Jordan, T. H. Predominance of unilateral rupture for a global catalog of large earthquakes, Bull. Seismo. Soc. Am., 2002, 92, 3309-3317, 2002.

12. Zhao, L. and Chevrot, S. SS-wave sensitivity to upper mantle structure: Implications for the mapping of transition zone discontinuity topographies, Geophys. Res. Lett., 2003, 30(11), 1590, doi:10.1029/2003GL017223.

13. Chen, P., Jordan, T. H. and Zhao, L. Finite moment tensor of the 3 September, 2002, Yorba Linda earthquake, Bull. Seismo. Soc. Am., 2005, 95, 1170-1180.

14. Zhao, L., Jordan, T. H., Olsen, K. B. & Chen, P. Fréchet kernels for imaging regional Earth structure based on three-dimensional reference models, Bull. Seismo. Soc. Am.,2005, 95, 2066-2080.

15. Wu, Y.-M., Yen, H.-Y., Zhao, L., Huang, B.-S. and Liang, W.-T. Magnitude determination using initial P waves: A single station approach, Geophys. Res. Lett., 2005, 33, L05306, doi:10.1029/2005GL025395.

16. Zhao, L. and Jordan, T. H. Structural sensitivities of finite-frequency seismic waves: A full-wave approach, Geophys. J. Int., 2006, 165, 981-990.

17. Deelman, E., Callaghan, S., Field, E., Francoeur, H., Graves, R., Gupta, N., Gupta, V., Jordan, T. H., Kesselman, C., Maechling, P., Mehringer, J., Mehta, G., Okaya, D., Vahi, K., and Zhao, L. Managing large-scale workflow execution from resource provisioning to provenance tracking: The CyberShake example, e-Science Conference 2006, December 4-6, 2006, Amsterdam, Netherlands. Best Paper Award.

18. Zhao, L., Chen, P. and Jordan, T. H. Strain Green tensor, reciprocity, and their applications to seismic source and structure studies, Bull. Seism. Soc. Am., 2006, 96, 1753-1763, doi:10.1785/0120050253.

19. Wu, Y-.M. and Zhao, L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning, Geophys. Res. Lett., 2006, 33, L16312, doi:10.1029/2006GL026871.

20. Chevrot, S. and Zhao, L. Multiscale finite-frequency Rayleigh wave tomography of the Kaapvaal craton, Geophys. J. Int., 2007, 169, 201-215.

21. Chen, P., Jordan, T. H. and Zhao, L. Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods, Geophys. J. Int., 2007, 170, 175-181.

22. Chen, P., Zhao, L. and Jordan, T. H. Full 3D tomography for the crustal structure of the Los Angeles region, Bull. Seismol. Soc. Am., 2007, 97, 1094-1120, doi: 10.1785/0120060222.

23. Chang, C.-H., Wu, Y.-M., Zhao, L. and Wu, F.-T. Aftershocks of the 1999 Chi-Chi, Taiwan, earthquake: The first hour, Bull. Seism. Soc. Am., 2007, 97, 1245-1258.

24. Maechling, P., Deelman, E., Zhao, L., Graves, R., Mehta, G., Gupta, N., Mehringer, J., Kesselman, C., Callaghan, S., Okaya, D., Francoeur, H., Gupta, V., Cui, Y., Vahi, K., Jordan, T. H. and Field, E. SCEC CyberShake workflows-automating probabilistic seismic hazard analysis calculations, in Workflows for eScience: Scientific Workflows for Grids, Taylor, I. J., Deelman, E., Gannon, D. B., and Shields, M. (Eds.), Springer, 2007, 530p, ISBN: 978-1-84628-519-6.

25. Wu, Y.-M., Chang, C.-H., Zhao, L., Shyu, J. B. H., Chen, Y.-G., Sieh, K. and Avouac, J.-P. Seismic tomography of Taiwan: Improved constraints from a dense network of strong-motion stations, J. Geophys. Res.,2007, 112, B08312, doi:10.1029/2007JB004983.

26. Zhang, Z., Shen, Y. and Zhao, L. Finite-frequency sensitivity kernels for head waves, Geophys. J. Int., 2007, 171, 847-856, doi:10.1111/j.1365-246X.2007.03575.x.

27. Wu, Y.-M., Chang, C.-H., Zhao, L., Teng, T.-L. and Nakamura, M. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005, Bull. Seism. Soc. Am., 2008, 98, 1471-1481, doi: 10.1785/0120070166.

28. Wu, Y.-M., Zhao, L., Chang, C.-H. and Hsu, Y.-J. Focal mechanism determination in Taiwan by genetic algorithm, Bull. Seism. Soc. Am.,2008, 98, 651-661.

29. Shen, Y., Zhang, Z. and Zhao, L. Component-dependent Fréchet sensitivity kernels and utility of three-component seismic records, Bull. Seism. Soc. Am., 2008, 98, 2517-2525.

30. Wu, Y.-M., Chen, C.-C., Zhao, L. and Chang, C.-H. Seismicity characteristics before the 2003 Chengkung, Taiwan, earthquake, Tectonophysics, 2008, 457, 177-182.

31. Wu, Y.-M., Zhao, L., Chang, C.-H., Hsiao, N.-C., Chen, Y.-G. and Hsu, S.-K. Relocation of the 2006 Pingtung earthquake sequence and seismotectonics in southern Taiwan, Tectonophysics, 2008, 479, 19-27, doi:10.1016/j.tecto.2008.12.001.

32. Zheng, Z., Zhao, L., Chen, Q.-F. and Zhou, S.-Y. Finite-source waveform modeling of moderate and small earthquakes: the 2006 Wen-An earthquake, Chinese Journal of Geophysics, 2009, 52, 976-982, doi: 10.3969/j.issn.0001-5733.2009.04.014.

33. Hsiao, N.-C., Wu, Y.-M., Shin, T.-C., Zhao, L. and Teng, T.-L. Development of earthquake early warning system in Taiwan, Geophys. Res. Lett., 2009, 36, L00B02.

34. Wu, Y.-M., Shyu, J. B. H., Chang, C.-H., Zhao, L., Nakamura, M. and Hsu, S.-K. Improved seismic tomography offshore northeastern Taiwan: Implications for subduction and collision processes between Taiwan and the southernmost Ryukyu, Geophys. J. Int., 2009, 178, 1042-1054, doi: 10.1111/j.1365-246X.2009.04180.x.

35. Chao, W.-A., Wu, Y.-M. and Zhao, L. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination, J. Seismol., 2010, 14, 495-504.

36. Chen, P., Jordan, T. H. and Zhao, L. Resolving fault plane ambiguity for small earthquakes, Geophys. J. Int., 2010, 181, 493-501, doi: 10.1111/j.1365-246X.2010.04515.x.

37. Yang, H.-Y., Zhao*, L. and Hung, S.-H. Synthetic seismograms by normal-mode summation: A new derivation and numerical examples, Geophys. J. Int., 2010, 183, 1613-1632.

38. Hsieh, J.-T., Wu, Y.-M., Zhao, L., Chao, W.-A. and Wu, C.-F. An examination of τc-Pd earthquake early warning method using a strong-motion building array, Soil Dynamics and Earthquake Engineering, 2010, doi: 10.1016/j.soildyn.2009.12.015.

39. Hsiao, N.-C., Wu, Y.-M., Zhao, L., Chen, D.-Y., Huang, W.-T., Kuo, K.-H., Shin, T.-C. and Leu, P.-L. A new prototype system for earthquake early warning in Taiwan, Soil Dynamics and Earthquake Engineering,2011, doi: 10.1016/j.soildyn.2010.01.008.

40. Lin, Y.-P., Zhao*, L. and Hung, S.-H. Assessment of tomography models of Taiwan using first-arrival times from the TAIGER active-source experiment, Bull. Seism. Soc. Am., 2011, 101, 866-880.

41. Zhao, L. and Chevrot, S. An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography: I-Theory, Geophys. J. Int., 2011, 185, 922-938.

42. Zhao, L. and Chevrot, S. An efficient and flexible approach to the calculation of three-dimensional full-wave Fréchet kernels for seismic tomography: II-Numerical results, Geophys. J. Int., 2011, 185, 939-954.

43. Chao, W.-A., Zhao, L. and Wu, Y.-M. Centroid fault-plane inversion in three-dimensional velocity structure using strong-motion records, Bull. Seism. Soc. Am., 2011, 101, 1330-1340.

44. Zhang, W., Shen, Y. and Zhao, L. Three-dimensional anisotropic seismic wave modelling in spherical coordinates by a collocated-grid finite-difference method, Geophys. J. Int., 2012, 188, 1359-1381.

45. Fuji, N., Chevrot, S., Zhao, L., Geller, R. J. and Kawai, K. Finite-frequency structural sensitivities of short-period compressional body waves, Geophys. J. Int., 2012,190, 522-540.

46. Wu, W.-N., Zhao*, L. and Wu, Y.-M. Empirical Relationships between Aftershock Zone Dimensions and Moment Magnitudes for Plate Boundary Earthquakes in Taiwan, Bull. Seism. Soc. Am., 2012, 103, 424-436, doi: 10.1785/0120120173.

47. Wu, W.-N. and Zhao, L. Delineating seismogenic structures by a revised best estimate method: application to the Taiwan orogenic belt, J. Seism., 2013, 17, 545-556.

48. Chao, W.-A., Zhao, L., Wu, Y.-M. and Lee, S.-J. Imaging source slip distribution by the back-projection of P-wave amplitudes from strong-motion records: A case study for the 2010 Jiasian, Taiwan, earthquake, Geophys. J. Int., 2013, 193, 1713-1725.

49. Zhao, L., Luo, Y., Liu, T.-Y. and Luo, Y.-J. Earthquake focal mechanisms in Yunnan and their inference on regional stress field, Bull. Seism. Soc. Am., 2013, 103, 2498-2507.

50. Chen, C.-H., Chao, W.-A., Wu, Y.-M., Zhao, L., Chen, Y.-G., Ho, W.-Y., Lin, T.-L., Kuo, K.-H. and Chang, J.-M. A seismological study of landquakes using a real-time broadband seismic network, Geophys. J. Int., 2013, 194, 885-898.

51. Li, S., Chen, Q., Zhao, L., Zhu, L., Gao, J., Li, M., Liu, G. and Wang, B. Anomalous focal mechanism of the May 2011 Mw5.7 deep earthquake in Northeastern China: regional waveform inversion and possible mechanism, Chinese Journal of Geophysics, 2013, 56, 2959-2970, doi: 10.6038/cjg20130910.

52. Lin, Y.-P., Zhao*, L. and Hung, S.-H. Full-wave effects on shear-wave splitting, Geophys. Res. Lett., 2014, 41, 799-804, doi: 10.1002/2013GL058742.

53. Legendre, C., Deschamps, F., Zhao, L., Lebedev, S., and Chen, Q.-f. Anisotropic Rayleigh-wave phase-velocity maps of eastern China, J. Geophys. Res., 2014, 119, 4802-4820.

54. Hsieh, M.-C., Zhao*, L. and Ma, K.-F. Efficient waveform inversion for average earthquake rupture in three-dimensional structures, Geophys. J. Int., 2014, 198, 1279-1292.

55. Legendre, C., Chen, Q.-f. and Zhao, L. Lithospheric structure beneath the East China Sea revealed by Rayleigh-wave phase velocities, J. Asian Earth Sci., 2014, 96, 213-225.

56. Chong, J., Ni, S. and Zhao, L. Joint inversion of crustal structure with the Rayleigh wave phase velocity dispersion and the ZH ratio, PAGEOPH, 2014, 171, 1-16.

57. Lin, Y.-P., Zhao*, L. and Hung, S.-H. Full-wave multiscale anisotropy tomography in Southern California, Geophys. Res. Lett., 2014, 41, 8809-8817, doi: 10.1002/2014GL061855.

58. Chao, W.-A., Wu, Y.-M., Zhao, L., Tsai, V. and Chen, C.-H. Seismologically determined bedload flux during the typhoon season, Sci. Rep. 5, 2015, 8261.


学术奖励与服务

国家级高层次人才计划,2017

中央研究院(台北)前瞻计划,2009-2013

Associate Editor, Journal of Geophysical Research-Solid Earth

Associate Editor, Earth and Planetary Physics

Editor Board, Earthquake Science

《地震学报》编委

CT理论与应用研究》编委

研究组成员

魏芝  士后

研究方向以及相关内容:地震波衰减与速度成像以及高频地面运动模拟。研究澳洲大陆地壳Lg波衰减结构,验证了该区与Rodinia超大陆分裂有关的Tasman线的存在,并给出了该区地震发生后高频地面运动的分布情况(Wei et al., 2017, Tectonophysics);建立澳洲大陆上地幔顶部更精细的三维S波速度模型的同时,发现其东海岸上地幔顶部的S波超低速区域,可能是该区遗留的地幔柱通道,并推测这里的一些火山依然可能成为活火山(Wei et al., 2018, GJI);建立川滇地区地壳高分辨率的Lg波衰减模型,计算该区地震发生后高频地面运动的强弱分布情况,并对该区不同区域进行地震危险性评估(Wei and Zhao, 2019, EPP)。


羿 博士后 

研究方向以及相关内容:地震信号处理,地震成像与反演。主要工作包括非直角坐标系波动方程偏移,地震勘探资料随机噪音压制(Lin and Zhang, 2020, Geophysics),NanoSIMS图像噪声压制(Lin et al., 2020, Surface and Interface Analysis),利用深度卷积神经网络检测流星尾迹等。目前从事川滇地区各向异性研究。利用全波形多尺度各向异性成像方法反演川滇地区的三维各向异性结构。该方法以全波形理论解释传统的SKS分裂观测数据,并利用波形对各向异性结构的三维敏感度函数对川滇地区进行三维各向异性成像。

 

何雨情  硕士研究生(2019级)

研究方向以及相关内容:大地震静态滑动分布与库伦应力变化。用大地测量数据(GPSInSAR)研究2016年新西兰凯库拉Mw7.8地震断层的静态滑动分布和由同震形变引起的静态库仑应力变化。利用贝叶斯方法基于InSAR观测反演2020年伽师Mw 6.0地震发震断层参数和滑动分布,提出可能的发震断层结构,并分析该地震对于邻近活动断层的影响。

 

苏培臻  博士研究生(2019级)

研究方向以及相关内容:辽宁地区中小地震震源机制研究以及复杂模型中的地震波模拟,大地震后强地面运动的实时计算。使用CAP方法反演了辽宁地区2013-2017193.5级以上地震的震源机制,发现该区地震的震源机制以走滑类型为主。矩心深度分布表明该区地壳内的各深度均可孕震,P轴和T轴方位角分布揭示了不同地区受到区域构造应力场的不同控制作用。


许午川  博士研究生(2019级)

研究方向以及相关内容:辽宁地区地震预警系统,火星震以及火星内部结构研究。将地震预警软件PRESTo运用于辽宁地区地震预警,确定适合辽宁地区的预警参数,并对PRESTo在辽宁地区的预警效果进行分析;利用Mineos、AxiSEM、SPECFEM3D等软件进行火星震模拟及理论地震图计算,火星内部结构反演。


郑凯月  博士研究生(2019级)

研究方向以及相关内容:远震接收函数研究龙门山断裂带地壳结构。利用远震P波接收函数方法获得龙门山断裂带南段及周边地区的地壳结构,并基于谱元法进行数值模拟。


孙景南  博士研究生(2020级)

研究方向以及相关内容:基于时间反转定位方法的微地震定位数值模拟。利用基于波动理论的时间反转(Time Reverse)定位方法在低信噪比条件下做地震定位的模拟。目前使用基于谱元法的三维计算软件SPECFEM3D做相关理论计算,实现三维复杂模型的建模及低信噪比环境下的时间反转定位的应用,如火山震颤的监测等。


祝奇文  博士研究生(2020级)

研究方向以及相关内容:一维/三维混合正演方法将耗费计算资源较大的三维高精度波场建模限制在百公里尺度范围内,从而有效减小了远震全波形迭代反演的计算量。我们使用AxiSEM/SEM混合方法(Beller et al. 2017)模拟了短周期远震地震波在台湾地区三维介质模型中的传播,并且在模拟中同时考虑区域速度模型的三维非均匀性和地表地形起伏。一方面,我们观察到台湾地区可能存在的速度结构的三维分均匀性对地震波除了带来震相到时变化外,还会产生与光的聚焦、散焦效应类似的振幅影响。另一方面,模拟发现台湾地区最大3km的地形起伏可能引起远震P波向Rayleigh面波的转换。



招生与招聘

时欢迎国内外年学者及学生参与本人所主持和参与的多研究课题,包括科技部重点专项项目以及国家自然基金委面上及重点目。