黄清华

地球与空间科学学院 • 教授

办公地址:
理科2号楼2806S

电子邮件:
huangq@pku.edu.cn

个人简介

  教授,大阪大学博士(1999),国家杰出青年科学基金获得者(2010),长江学者特聘教授(2013/2014)。

基本情况

  黄清华,北京大学地球与空间科学学院教授,1990年获中国科学技术大学理学学士学位,1993年获中国地震局地震研究所理学硕士学位,1999年获日本大阪大学理学博士学位,2010年度国家杰出青年科学基金获得者,2013/2014年度教育部长江学者特聘教授,2020年度国家自然科学基金创新研究群体负责人

  2002年迄今在北京大学从事教学科研工作,曾在日本理化研究所(RIKEN)、瑞士联邦理工学院(ETH)、日本东京大学从事访问研究。

  主要从事地球电磁和地震物理研究,通过电磁算法、震电机理、统计物理及模型解释等系列研究,形成了基于电磁理论方法研究地震的系统性成果。连续入选Elsevier中国高被引学者(2020-2022)。曾获2016年度中国地球物理科技创新一等奖、2014年度全国优秀科技工作者、2002年中国科技期刊卓越行动计划优秀主编。现兼任教育部地球物理学类教学指导委员会副主任,中国地球物理学会副理事长,中国地震学会副理事长,IUGG地震与火山电磁工作组(EMSEV)执委兼IASPEI代表,《JGR-Solid Earth》Associate Editor,《地球物理学报》副主编。


研究方向

  地球电磁学是基于电磁原理和方法研究地球介质的电磁学性质、地球电磁场的空间分布和时间变化规律及其应用的地球物理分支学科。其研究与应用涵盖地球及行星的动力学演化、地球电磁场起源及传播特征、深部结构电磁探测及地质构造分析、能源与矿产资源勘探、环境和工程勘查、自然灾害监测及预警等。

  本研究组主要研究兴趣包括地震电磁、大地电磁、电磁正反演方法及其应用。

Read More...

简历

学习经历

1996/04 - 1999/03,日本大阪大学,博士

1990/09 - 1993/07,中国地震局地震研究所,硕士(其中,1990年9月-1991年7月在中国科学院研究生院学习)

1985/09 - 1990/07,中国科学技术大学,学士


工作经历

2015/01 至今,北京大学,地球与空间科学学院,博雅特聘教授

2016/12 -2017/01日本东京大学,地震研究所,访问教授

2006/12 - 2007/02,瑞士联邦理工学院(ETH Zurich,地球物理研究所,访问教授

2006/08 - 2015/01,北京大学,地球与空间科学学院,教授

2002/02 - 2006/08,北京大学,地球与空间科学学院,副教授

1999/04 - 2002/02,日本理化研究所,访问学者

1995/10 - 2002/02,广东省地震局,助理研究员

1993/07 - 1995/10,广东省地震局,助理工程师


学术兼职

2017/01 至今,JGR-Solid Earth, Associate Editor

2015/01 - 2019/12,国务院学位委员会地球物理学科评议组,成员

2013/04 至今,教育部地球物理学类教学指导委员会,副主任委员

2013/08 – 2013/08,The 8th International Workshop on Statistical Seismology,组委会主席

2013/01 至今,《地球物理学报》,副主编

2011/10 至今,国际学术组织IUGG地震与火山电磁工作委员会(EMSEV),执委,IASPEI代表(2019/07至今

2011/10 至今中国地震学会,地震电磁专业委员会副主任委员、常务理事(2016/09至今)、副理事长(2020/10至今)

2009/11 至今,中国地球物理学会,副秘书长(2009-2022)、常务理事(2012至今、副理事长(2022至今)、地球电磁学专业委员会主任委员(2023至今)、固体地球物理学专业委员会副主任委员(2017至今)


奖励与荣誉

爱思唯尔(Elsevier)2020年、2021年、2022中国高被引学者,2021,2022,2023

中国科技期刊卓越行动计划优秀主编,2022

国家自然科学基金创新研究群体,2020

中国地球物理科学技术奖科技创新一等奖, 2016

全国优秀科技工作者, 2014

教育部长江学者奖励计划特聘教授, 2013/2014

国家杰出青年科学基金获得者,2010

赵九章优秀中青年科学奖,2003

论文与专著
  1. Zhang HQ, Egbert GD, Huang QH*, 2023. Constraints on MTZ water content from joint inversion of diurnal variations and magnetospheric signals. Geophysical Research Letters, 50(10), e2023GL102765, https://doi.org/10.1029/2023GL102765.

  2. Zhang Y, Li M, Huang QH*, Shao ZG, Liu J, Zhang XM, Ma WY, Parrot M, 2023. Statistical correlation between DEMETER satellite electronic perturbations and global earthquakes with M≥4.8. IEEE Transactions on Geoscience and Remote Sensing, 61, 2001118, https://doi.org/10.1109/TGRS.2023.326.

  3. Hu KY, Ren HX*, Huang QH*, Zeng L, Butler KE, Jougnot D, Linde N, Holliger K, 2023. Water table and permeability estimation from multi-channel seismoelectric spectral ratios. Journal of Geophysical Research - Solid Earth, 128(5), e2022JB025505, https://doi.org/ 10.1029/2022JB025505.

  4. Wu SH, Huang QH*, Zhao L, 2023. Fast Bayesian inversion of airborne electromagnetic data based on the invertible neural network. IEEE Transactions on Geoscience and Remote Sensing, 61, 5907211, https://doi.org/10.1109/TGRS.2023.3264777.

  5. Zhang H, Yuan SC, Ren HX*, Zhang W, Huang QH, Chen XF, 2023. Discontinuous curvilinear collocated grid combined with nonuniform time step Runge-Kutta scheme for poroelastic finite-difference modeling. Geophysics, 88(1), 104812, https://doi.org/10.1190/geo2022-0180.1.

  6. Xue JY, Wu SH, Huang QH*, Zhao L, Sarlis NV, Varotsos PA, 2023. RASE: A real-time automatic search engine for anomalous seismic electric signals in geoelectric data. IEEE Transactions on Geoscience and Remote Sensing, 61, 5905911, https://doi.org/10.1109/TGRS.2023.3260202.

  7. Zhang Y, Huang QH*, 2023. Seismicity changes before major earthquakes in Sichuan, China, revealed by a combination of RTL Algorithm and ETAS model. Seismological Research Letters, 94(2A), 844-851, https://doi.org/10.1785/0220220282.

  8. Hu KY, Huang QH*, Han P, Han ZW, Yang ZT, Luo Q, Li P, Miao M, Zeng ZY, Chen HY, Wang R, Mo CY, 2023. A hydrochemical study of groundwater salinization in Qinzhou Bay, Guangxi, southern China. Earth and Space Science, 10(3), e2022EA002565, https://doi.org/10.1029/2022EA002565.

  9. Wu SH, Huang QH*, Zhao L, 2023. A deep learning-based network for the simulation of airborne electromagnetic responses. Geophysical Journal International, 233(1), 253-263, https://doi.org/10.1093/gji/ggac463.

  10. Gan L, Wu QJ*, Huang QH*, Tang RJ, 2023. Quality classification and inversion of receiver function using convolutional neural network. Geophysical Journal International, 232(3), 1833-1848, https://doi.org/10.1093/gji/ggac417.

  11. 甘露,吴庆举*,黄清华*,张慧茜,唐荣江,2022. 大地电磁与接收函数结构约束联合反演. 地球物理学报, 65(11), 4460-4470, https://doi.org/10.6038/cjg2022Q0319.

  12. Tang WW, Huang QH*, Deng JZ, Liu JX, Zhou F, 2022. Joint application of secondary field and coupled potential formulations to unstructured meshes for 3D CSEM forward modeling. IEEE Transactions on Geoscience and Remote Sensing, 60, 5921409, https://doi.org/10.1109/TGRS.2022.3212884.

  13. Zhang H, Yuan SC, Ren HX*, Ma BW, Zhang W, Huang QH, Chen XF, 2022. 2D electromagnetic simulation for ground penetrating radar with a topographic ground surface by the curvilinear collocated-grid finite-difference method combined with equivalent field method. Journal of Applied Geophysics, 206, 104812, https://doi.org/10.1016/j.jappgeo.2022.104812.

  14. 孟绿汀,张慧茜,黄清华*,2022. 二维与三维大地电磁反演的敏感度研究. 地球物理学报, 65(8), 3078-3087, https://doi.org/10.6038/cjg2022P0976.

  15. Zhang HQ, Egbert GD, Huang QH*, 2022. A relatively dry mantle transition zone revealed by geomagnetic diurnal variations. Science Advances, 8(31), eabo3293, https://doi.org/10.1126/sciadv.abo3293.

  16. Xue JY, Huang QH*, Wu SH, Nagao T, 2022. LSTM-autoencoder network for the detection of seismic electric signals. IEEE Transactions on Geoscience and Remote Sensing, 60, 5917012, https://doi.org/10.1109/TGRS.2022.3183389.

  17. Tang WW, Chen WZ, Deng JZ, Huang QH*, 2022. Forward calculation of 3D CSEM responses based on joint application of secondary field and coupled potential formulations. Geophysics, 87(4), E253-E265, https://doi.org/10.1190/GEO2021-0480.1.

  18. Yue H*, Shen ZK, Zhao ZY, Wang T, Cao BN, Li Z, Bao XW, Zhao L, Song XD, Ge ZX, Ren CM, Lu WF, Zhang Y, Liu-Zeng J, Wang M, Huang QH, Zhou SY, Xue L, 2022. Rupture process of the 2021 M7.4 Maduo earthquake and implication for deformation mode of the Songpan-Ganzi Terrane in Tibetan Plateau. Proceedings of the National Academy of Sciences USA, 119(23), e2116445119, https://doi.org/10.1073/pnas.2116445119.

  19. Wu SH, Huang QH*, Zhao L, 2022. Instantaneous inversion of airborne electromagnetic data based on deep learning. Geophysical Research Letters, 49(10), e2021GL097165, https://doi.org/10.1029/2021GL097165.

  20. 姚鸿波, 任政勇*, 汤井田*, 林玉峰, 殷长春, 胡祥云, 黄清华, 张可可, 2021. 高精度感应地磁场正演模拟计算及其潜在应用分析. 中国科学: 地球科学, 51(10): 1796-1812.

  21. Zhang Y*, Feng WP, Li XX, Liu YJ, Ning JY, Huang QH, 2021. Joint inversion of rupture across a fault stepover during the 8 August 2017 Mw 6.5 Jiuzhaigou, China, earthquake. Seismological Research Letters, 92(6), 3386-3397, doi: 10.1785/0220210084.

  22. 胡开颜,莫淳淯,张益华,孙健维,李双双,韩鹏*,黄清华,2021. 基于自然电位法的滑坡监测实验研究. 地球物理学报, 64(12), 4582-4593, doi: 10.6038/cjg2021P0161.

  23. He L, Guo Z*, Chen YJ, Huang Q, and Yang Y, 2021. Seismic imaging of a magma chamber and melt recharge of the dormant Datong volcanoes. Earth and Space Science, 8, e2021EA001931. https://doi.org/10.1029/2021EA001931.

  24. Ma BW, Zhu WQ, Huang QH*, 2021. Imaging shallow fault structures by three-dimensional reverse time migration of ground penetration radar data. Journal of Applied Geophysics, 190, 104342. https://doi.org/10.1016/j.jappgeo.2021.104342.

  25. 李俊秀,叶涛,张慧茜,黄清华*2021. 腾冲火山多地球物理参数模型. 地球物理学报, 64(10), 3657-3668, doi: 10.6038/cjg2021P0214.

  26. Wu SH, Huang QH*, Zhao L, 2021. Convolutional neural network inversion of airborne transient electromagnetic data. Geophysical Prospecting, 69(8-9), 1761-1772, doi: 10.1111/1365-2478.13136.

  27. Zheng XZ, Ren HX*, Butler KE, Zhang HM, Sun YC, Zhang W, Huang QH, Chen XF, 2021. Seismoelectric and electroseismic modelling in stratified porous media with a shallow or ground surface source. Journal of Geophysical Research - Solid Earth, 126(9), e2021JB021950, https://doi.org/ 10.1029/2021JB021950.

  28. Meng LT, Huang QH*, Zhao L, 2021. Removing Galvanic Distortion in 3D Magnetotelluric Data Based on Constrained Inversion. Pure and Applied Geophysics, 178, 2149-2169, https://doi.org/10.1007/s00024-021-02757-4.

  29. 叶涛,陈小斌*,黄清华*,崔腾发, 2021. 2021521日云南漾濞地震(Ms 6.4)震源区三维电性结构及发震机制讨论. 地球物理学报, 64(7): 2267-2277, doi: 10.6038/cjg2021O0523.

  30. Yuan SC, Ren HX*, Huang QH*, Zheng XZ, Yang ZT, He ZX, Zhang W, Chen XF, 2021. Refining higher modes of Rayleigh waves using seismoelectric signals excited by a weight-drop source: study from numerical simulation aspect. Journal of Geophysical Research - Solid Earth, 126(5), e2020JB021336. https://doi.org/10.1029/2020JB021336.

  31. Hu KY, Huang QH*, Xue L, 2021. Groundwater flow monitoring by fusion probability tomography of self-potential data. IEEE Geoscience and Remote Sensing Letters, 18(4): 587-591, doi: 10.1109/LGRS.2020.2981831.

  32. Sun YC, Ren HX*, Yamazaki K, Zeng L, Huang QH, Chen XF, 2021. Semi‑analytical solutions of seismo‑electromagnetic signals arising from the motional induction in 3‑D multi‑layered media: part I—theoretical formulations. Earth, Planets and Space, 73(1): 20, https://doi.org/10.1186/s40623-020-01327-7.

  33. Wu SH, Huang QH*, Zhao L, 2021. De-noising of transient electromagnetic data Based on the long short-term memory-autoencoder. Geophysical Journal International, 224(1): 669-681, https://doi.org/10.1093/gji/ggaa424.

  34. 刘书元,黄清华*2020. 考虑震源机制解的地震丛集区搜索方法. 地球物理学报, 63(11): 4114-4124, doi: 10.6038/cjg2020O0197.

  35. Zheng X, Zhang Y*, Wang R, Zhao L, Huang Q, 2020. Automatic inversions of strong-motion records for finite-fault models of significant earthquakes in and around Japan. Journal of Geophysical Research - Solid Earth, 125(9), e2020JB019992. https://doi.org/10.1029/2020JB019992.

  36. Ye T, Chen XB*, Huang QH*, Zhao L, Zhang Y, Uyeshima M, 2020. Bifurcated crustal channel flow and seismogenic structures of intraplate earthquakes in western Yunnan, China as revealed by threedimensional magnetotelluric imaging. Journal of Geophysical Research - Solid Earth, 125, e2019JB018991, doi: 10.1029/2019JB018991.

  37. Yuan YR, Uyeshima M, Huang QH*, Tang J, Li Q, Teng YT, 2020. Continental-scale deep electrical resistivity structure beneath China. Tectonophysics, 790, 228559, doi: 10.1016/j.tecto.2020.228559.

  38. 汪凯翔,黄清华*,吴思弘,2020. 长短时记忆神经网络在地电场数据处理中的应用. 地球物理学报, 63(8): 3015-3024, doi: 10.6038/cjg2020O0119.

  39. Hu KY, Jougnot D, Huang QH, Looms MC, Linde N*, 2020. Advancing quantitative understanding of self-potential signatures in the critical zone through long-term monitoring, Journal of Hydrology, 585, 124771, doi: 10.1016/j.jhydrol.2020.124771.

  40. Zhu W, Huang Q*, Liu L, Ma B, 2020. Three-dimensional reverse time migration of ground-penetrating radar signals. Pure and Applied Geophysics, 177(2), 853-865, doi: 10.1007/s00024-019-02341-x.

  41. Wu Z*, Zhang Y, Geobel T, Huang Q, Williams C, Xing H, Rundle J, 2020. Continental earthquakes: physics, simulation, and data science—introduction. Pure and Applied Geophysics, 177(1), 1-8, doi: 10.1007/s00024-019-02382-2.

  42. Ding M, Lin J*, Gu C, Huang Q, Zuber M, 2019. Variations in Martian lithospheric strength based on gravity/topography analysis. Journal of Geophysical Research - Planets, 124(11), 3095-3118, doi: 10.1029/2019JE005937.

  43. Sun YC, Uyeshima M, Ren HX*, Huang QH, Aizawa K, Tsukamoto K, Kanda W, Seki K, Kishita T, Ohminato T, Watanabe A, Ran JJ, Chen XF, 2019. Numerical simulations to explain the coseismic electromagnetic signals: a case study for a M5.4 aftershock of the 2016 Kumamoto earthquake. Earth Planets and Space, 71(1): 143, doi: 10.1186/s40623-019-1122-7.

  44. 万伟,唐新功,黄清华*, 2019. 陆地可控源电磁法三维勘探的激电效应影响研究. 地球物理学进展, 34(6), 2328-2335, doi: 10.6038/pg2019DD0211.

  45. 万伟,唐新功,黄清华*, 2019. 陆地可控源电磁法探测效果的频率响应. 地球物理学报, 62(12), 4846-4859, doi: 10.6038/cjg2019N0069.

  46. Zhang H, Egbert GD, Chave AD, Huang Q*, Kelbert A, Erofeeva SY, 2019. Constraints on the resistivity of the oceanic lithosphere and asthenosphere from seafloor ocean tidal electromagnetic measurements. Geophysical Journal International, 219(1), 464-478, doi: 10.1093/gji/ggz315.

  47. Sun YC, Ren HX*, Zheng XZ, Li N, Zhang W, Huang QH, and Chen XF, 2019. 2-D poroelastic wave modelling with a topographic free surface by the curvilinear grid finite-difference method. Geophysical Journal International, 218(3), 1961-1982, doi: 10.1093/gji/ggz263.

  48. Huang QH*, 2019. Seismicity pattern changes prior to the 2008 Ms7.3 Yutian earthquake. Entropy, 21(2), 118, doi: 10.3390/e21020118.

  49. Ye T, Huang QH*, Chen XB, Zhang HQ, Chen YJ, Zhao L, Zhang Y, 2018. Magma chamber and crustal channel flow structures in the Tengchong volcano area from 3D MT inversion at the intra-continental block boundary southeast of the Tibetan Plateau. Journal of Geophysical Research - Solid Earth, 123, 11112-11126, doi: 10.1029/2018JB015936.

  50. 李展辉*,黄清华, 2018. 任意形状水平接地导线源瞬变电磁法一维正反演研究. 地球物理学进展, 33(4): 1515-1525, doi: 10.6038/pg2018BB0226.

  51. 叶涛,黄清华*,陈小斌, 2018. 滇西南地区南汀河断裂带三维深部电性结构及其孕震环境. 地球物理学报, 61(11): 4504-4517, doi: 10.6038/cjg2018M0287.

  52. Li SL, Guo Z*, Chen YJ, Yang YJ, Huang QH, 2018. Lithospheric structure of the Northern Ordos from ambient noise and teleseismic surface wave tomography. Journal of Geophysical Research - Solid Earth, 123, 6940–6957, doi: 10.1029/2017JB015256.

  53. Hu XY*, Huang QH, Farquharson C, Slob E, Spitzer K, 2018. 3D forward modeling and inversion of electromagnetics and applications - Introduction. Geophysics, 83(2), WBi-WBi, doi: 10.1190/GEO2018-0301-SPSEINTRO.1.

  54. Ren HX*, Huang QH, Chen XF, 2018. Quantitative understanding on the amplitude decay characteristic of the evanescent electromagnetic waves generated by seismoelectric conversion. Pure and Applied Geophysics, 175, 8, 2853-2879, doi: 10.1007/s00024-018-1823-z.

  55. 周思杰,黄清华*, 2018. 基于贝叶斯方法的二维大地电磁尖锐边界反演研究. 地球物理学报, 61(8): 3420-3434, doi: 10.6038/cjg2018M0241.

  56. Liu ZP, Song C, Meng LS, Ge ZX*, Huang QH, Wu QJ, 2017. Utilizing a 3D Global P-Wave Tomography Model to Improve Backprojection Imaging: A Case Study of the 2015 Nepal Earthquake. Bulletin of the Seismological Society of America, 107(5): 2459-2466, doi: 10.1785/0120170091.

  57. Zhang Y*, Wang RJ, Walter TR, Feng WP, Chen YS, Huang QH, 2017.  Significant lateral dip changes may have limited the scale of the 2015 M-w 7.8 Gorkha earthquake. Geophysical Research Letters, 44(17), 8847-8856, doi: 10.102/2017GL074095.

  58. 戴锐, 李展辉*, 黄清华, 2017. 瞬变电磁法三维模型数据的一维反演效果研究. 地球物理学进展, 32(3): 1121-1129, doi: 10.6038/pg20170323.

  59. Liu LB*, Zhang FK, Huang QH, Li SC, Sun HF, 2017. Fast Model of Transient Electromagnetic Response to Geological Structures Ahead of Tunnel Face. Studies in Applied Electromagnetics and Mechanics, 42, 211-219, doi: 10.3233/978-1-61499-767-2-211. (EI, Accession number: 20172203721227)

  60. Chang L*, Roberts A, Heslop D, Hayashida A, Li JH, Zhao X, Tian W, Huang QH, 2016. Widespread occurrence of silicate-hosted magnetic mineral inclusions in marine sediments and their contribution to paleomagnetic recording. Journal of Geophysical Research Solid Earth, 121: 8415-8431, doi: 10.1002/2016JB013109.

  61. Zhang HQ, Huang QH*, Zhao GZ, Guo Z, Chen YJ, 2016. Three-dimensional conductivity model of crust and uppermost mantle at the northern Trans North China Orogen: Evidence for a mantle source of Datong volcanoes. Earth and Planetary Science Letters, 453, 182-192, doi: 10.1016/j.epsl.2016.08.025.

  62. Han P, Hattori K*, Huang QH, Hirooka S, Yoshino C, 2016. Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena. Journal of Asian Earth Sciences, 129: 13-21, doi: 10.1016/j.jseaes.2016.07.011.

  63. 朱尉强,黄清华*, 2016. 探地雷达衰减补偿逆时偏移成像方法. 地球物理学报, 59(10): 3909-3916, doi: 10.6038/cjg20161034.

  64. Li ZH, Huang QH*, Xie XB, Tang XG, Chang L, 2016. A generic 1D forward modeling and inversion algorithm for TEM sounding with an arbitrary horizontal loop. Pure and Applied Geophysics, 173, 2869-2883, doi: 10.1007/s00024-015-1336-6.

  65. Ren HX*, Huang QH, Chen XF, 2016. Numerical simulation of seismo-electromagnetic fields associated with a fault in a porous medium. Geophysical Journal International, 206: 205-220, doi: 10.1093/gji/ggw144.

  66. Huang Q*, Gerstenberger M, Zhuang J (Eds.) Current Challenges in Statistical Seismology, Springer, 2016.

  67. 冯永革,王海洋,陈永顺*,黄清华, 2016. 1989-1999大同地震序列的隐伏断层研究:库仑应力分析和余震JHD重定位. 地球物理学报, 59(2): 568-577, doi: 10.6038/cjg20160215.

  68. 王桥,黄清华*, 2016. 华北地磁感应矢量时空特征分析. 地球物理学报, 59(1): 215-228, doi: 10.6038/cjg20160118.

  69. Ren HX*, Huang QH, Chen XF, 2016. Existence evanescent electromagnetic waves resulting from seismoelectric conversion at a solid-porous interface. Geophysical Journal International, 204: 147-166, doi: 10.1093/gji/ggv400.

  70. 徐光晶,汤吉,黄清华,上嶋诚, 2015. 华北地区上地幔及过渡带电性结构研究. 地球物理学报, 58(2): 566-575, doi: 10.6038/cjg20150219.

  71. Huang QH*, 2015. Forecasting the epicenter of a future major earthquake. Proceedings of the National Academy of Sciences USA, 112(4): 944-945, doi: 10.1073/pnas.1423684112.

  72. Ren HX*, Wen J, Huang QH, Chen XF, 2015. Electrokinetic effect combined with surface-charge assumption: a possible generation mechanism of co-seismic EM signals. Geophysical Journal International, 200(2): 835-848, doi: 10.1093/gji/ggu435.

  73. Huang QH*, Ren HX, Zhang D, Chen YJ, 2015. Medium effect on the characteristics of the coupled seismic and electromagnetic signals. Proceedings of the Japan Academy, Series B, 91(1): 17-24, doi: 10.2183/pjab.91.17.